skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jaeglé, Lyatt"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Long‐term declines in concentrations of fine particulate matter (PM2.5) in the United States (U.S.) have been disrupted in recent years, with recent trends stagnating or reversing. In this study, we analyze surface observations of PM2.5composition from 2002 to 2022 to identify the chemical components driving this shift. We find that PM2.5concentrations plateau across seasons and regions in the contiguous U.S. since 2016, even after excluding estimated wildfire impacts, suggesting that the rise in wildfire activity alone does not account for these trends. The stagnation is primarily driven by a slowdown in the reduction of sulfate and a non‐significant increase in organic aerosols. In the Eastern and Central U.S., sulfate concentrations generally mirror decreasing anthropogenic SO2emissions, except in winter, where chemical feedbacks related to oxidant limitations weaken the response of sulfate. We find that nitrate and NO2concentrations decrease slower than anthropogenic nitrogen oxides (NOx) emissions, particularly in fall and winter, suggesting a potential overestimate in the decrease of NOxemissions in the U.S. Environmental Protection Agency National Emission Inventory (NEI) and/or an increasing role of natural and non‐U.S. sources. In the Southeast, the decline in organic aerosol concentrations has stalled since 2015, possibly due to weaker decreases in sulfate‐induced secondary organic aerosol (SOA) formation from isoprene, combined with increases in monoterpene‐derived SOA as the climate warms. Despite continued decreases in the NEI black carbon (BC) emissions, BC concentrations have stagnated since 2015, even after removing the estimated influence of wildfire smoke, indicating a possible underestimate in emissions. 
    more » « less
  2. Abstract. Aerosol interactions with clouds represent a significant uncertainty in our understanding of the Earth system. Deep convective clouds may respond to aerosol perturbations in several ways that have proven difficult to elucidate with observations. Here, we leverage the two busiest maritime shipping lanes in the world, which emit aerosol particles and their precursors into an otherwise relatively clean tropical marine boundary layer, to make headway on the influence of aerosol on deep convective clouds. The recent 7-fold change in allowable fuel sulfur by the International Maritime Organization allows us to test the sensitivity of the lightning to changes in ship plume aerosol number-size distributions. We find that, across a range of atmospheric thermodynamic conditions, the previously documented enhancement of lightning over the shipping lanes has fallen by over 40 %. The enhancement is therefore at least partially aerosol-mediated, a conclusion that is supported by observations of droplet number at cloud base, which show a similar decline over the shipping lane. These results have fundamental implications for our understanding of aerosol–cloud interactions, suggesting that deep convective clouds are impacted by the aerosol number distribution in the remote marine environment. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  3. Abstract Naturally occurring chlorate (ClO3) has been observed on Earth and potentially plays important roles in hydrology and mineralogy on Mars. However, natural sources of chlorate are uncertain. Here, we quantify the importance of atmospheric sources of chlorate. We use GEOS‐Chem, a global three‐dimensional chemical transport model, to simulate the formation, photochemical loss, transport, and deposition of atmospheric chlorate on present‐day Earth. We also develop a method to estimate the17O‐excess (∆17O) and the36Cl‐to‐total‐Cl ratio (36Cl/Cl) of atmospheric chlorate to interpret the observed isotopic composition of chlorate accumulated in desert soils. The model predicts that gas‐phase chemistry can produce 15 Gg Cl year−1of chloric acid (HClO3), which predominantly is taken up by aerosols to form particulate chlorate. Comparing the model with observations suggests that particulate chlorate undergoes chemical loss in the atmosphere, which controls the amount reaching Earth's surface. We show that the initial ∆17O that atmospheric chlorate acquires during formation would be erased rapidly in acidic aerosols due to the exchange of oxygen atoms with water. The analysis of36Cl/Cl does not preclude a partial stratospheric origin for chlorate deposits in the Atacama Desert. In Death Valley, aqueous‐phase oxidation of oxychlorine species and anthropogenic activities potentially have greater influence. Our findings highlight the need for more observations of atmospheric chlorate and laboratory measurements of its reactivity in acidic conditions. Atmospheric chemistry should be considered in the future studies of the origin of chlorate on Mars. 
    more » « less
  4. Abstract We examine the distribution of aerosol optical depth (AOD) across 27,707 northern hemisphere (NH) midlatitude cyclones for 2005–2018 using retrievals from the Moderate Resolution Spectroradiometer (MODIS) sensor on the Aqua satellite. Cyclone‐centered composites show AOD enhancements of 20%–45% relative to background conditions in the warm conveyor belt (WCB) airstream. Fine mode AOD accounts for 68% of this enhancement annually. Relative to background conditions, coarse mode AOD is enhanced by more than a factor of two near the center of the composite cyclone, co‐located with high surface wind speeds. Within the WCB, MODIS AOD maximizes in spring, with a secondary maximum in summer. Cyclone‐centered composites of AOD from the Modern Era Retrospective analysis for Research and Applications, version 2 Global Modeling Initiative (M2GMI) simulation reproduce the magnitude and seasonality of the MODIS AOD composites and enhancements. M2GMI simulations show that the AOD enhancement in the WCB is dominated by sulfate (37%) and organic aerosol (25%), with dust and sea salt each accounting for 15%. MODIS and M2GMI AOD are 60% larger in North Pacific WCBs compared to North Atlantic WCBs and show a strong relationship with anthropogenic pollution. We infer that NH midlatitude cyclones account for 355 Tg yr−1of sea salt aerosol emissions annually, or 60% of the 30–80°N total. We find that deposition within WCBs is responsible for up to 35% of the total aerosol deposition over the NH ocean basins. Furthermore, the cloudy environment of WCBs leads to efficient secondary sulfate production. 
    more » « less
  5. Abstract Ambient fine particulate matter (PM 2.5 ) is the world’s leading environmental health risk factor. Reducing the PM 2.5 disease burden requires specific strategies that target dominant sources across multiple spatial scales. We provide a contemporary and comprehensive evaluation of sector- and fuel-specific contributions to this disease burden across 21 regions, 204 countries, and 200 sub-national areas by integrating 24 global atmospheric chemistry-transport model sensitivity simulations, high-resolution satellite-derived PM 2.5 exposure estimates, and disease-specific concentration response relationships. Globally, 1.05 (95% Confidence Interval: 0.74–1.36) million deaths were avoidable in 2017 by eliminating fossil-fuel combustion (27.3% of the total PM 2.5 burden), with coal contributing to over half. Other dominant global sources included residential (0.74 [0.52–0.95] million deaths; 19.2%), industrial (0.45 [0.32–0.58] million deaths; 11.7%), and energy (0.39 [0.28–0.51] million deaths; 10.2%) sectors. Our results show that regions with large anthropogenic contributions generally had the highest attributable deaths, suggesting substantial health benefits from replacing traditional energy sources. 
    more » « less
  6. Abstract. We use the GEOS-Chem chemical transport model to examine theinfluence of bromine release from blowing-snow sea salt aerosol (SSA) onspringtime bromine activation and O3 depletion events (ODEs) in theArctic lower troposphere. We evaluate our simulation against observations oftropospheric BrO vertical column densities (VCDtropo) from the GOME-2 (second Global Ozone Monitoring Experiment)and Ozone Monitoring Instrument (OMI) spaceborne instruments for 3 years (2007–2009), as well asagainst surface observations of O3. We conduct a simulation withblowing-snow SSA emissions from first-year sea ice (FYI; with a surface snowsalinity of 0.1 psu) and multi-year sea ice (MYI; with a surface snowsalinity of 0.05 psu), assuming a factor of 5 bromide enrichment of surfacesnow relative to seawater. This simulation captures the magnitude ofobserved March–April GOME-2 and OMI VCDtropo to within 17 %, as wellas their spatiotemporal variability (r=0.76–0.85). Many of the large-scalebromine explosions are successfully reproduced, with the exception of eventsin May, which are absent or systematically underpredicted in the model. Ifwe assume a lower salinity on MYI (0.01 psu), some of the bromine explosionsevents observed over MYI are not captured, suggesting that blowing snow overMYI is an important source of bromine activation. We find that the modeledatmospheric deposition onto snow-covered sea ice becomes highly enriched inbromide, increasing from enrichment factors of ∼5 inSeptember–February to 10–60 in May, consistent with composition observations of freshly fallen snow. We propose that this progressive enrichment indeposition could enable blowing-snow-induced halogen activation to propagateinto May and might explain our late-spring underestimate in VCDtropo.We estimate that the atmospheric deposition of SSA could increase snow salinityby up to 0.04 psu between February and April, which could be an importantsource of salinity for surface snow on MYI as well as FYI covered by deepsnowpack. Inclusion of halogen release from blowing-snow SSA in oursimulations decreases monthly mean Arctic surface O3 by 4–8 ppbv(15 %–30 %) in March and 8–14 ppbv (30 %–40 %) in April. We reproduce atransport event of depleted O3 Arctic air down to 40∘ Nobserved at many sub-Arctic surface sites in early April 2007. While oursimulation captures 25 %–40 % of the ODEs observed at coastal Arctic surfacesites, it underestimates the magnitude of many of these events and entirelymisses 60 %–75 % of ODEs. This difficulty in reproducing observed surfaceODEs could be related to the coarse horizontal resolution of the model, theknown biases in simulating Arctic boundary layer exchange processes, thelack of detailed chlorine chemistry, and/or the fact that we did not includedirect halogen activation by snowpack chemistry. 
    more » « less
  7. Abstract Tropospheric reactive bromine (Bry) influences the oxidation capacity of the atmosphere by acting as a sink for ozone and nitrogen oxides. Aerosol acidity plays a crucial role in Bryabundances through acid‐catalyzed debromination from sea‐salt‐aerosol, the largest global source. Bromine concentrations in a Russian Arctic ice‐core, Akademii Nauk, show a 3.5‐fold increase from pre‐industrial (PI) to the 1970s (peak acidity, PA), and decreased by half to 1999 (present day, PD). Ice‐core acidity mirrors this trend, showing robust correlation with bromine, especially after 1940 (r = 0.9). Model simulations considering anthropogenic emission changes alone show that atmospheric acidity is the main driver of Brychanges, consistent with the observed relationship between acidity and bromine. The influence of atmospheric acidity on Bryshould be considered in interpretation of ice‐core bromine trends. 
    more » « less
  8. Abstract Using deposition observations from precipitation samples collected by the National Atmospheric Deposition Program at 125 sites across the United States, we show that the mean wet deposition flux of non‐sea‐salt chloride (NSS Cl) has decreased by 83% throughout the eastern United States between 1998 and 2018. We find that 30% of the sites switch from having excess Cl− to being depleted in Cl. We attribute the observed decreases in NSS Cl− deposition to a 95% decrease in U.S. anthropogenic HCl emissions since 1998. We propose that industry emission controls that remove HCl as a cobenefit of NOxand SO2have caused significant decreases in NSS Cl− deposition throughout the eastern United States, in addition to shifts from coal to natural gas and to coal with lower Cl− content. Our analysis implies that the lower tropospheric reactive inorganic chlorine burden was larger over the United States in the past than it is today. 
    more » « less
  9. Abstract Snowpack emissions are recognized as an important source of gas‐phase reactive bromine in the Arctic and are necessary to explain ozone depletion events in spring caused by the catalytic destruction of ozone by halogen radicals. Quantifying bromine emissions from snowpack is essential for interpretation of ice‐core bromine. We present ice‐core bromine records since the pre‐industrial (1750 CE) from six Arctic locations and examine potential post‐depositional loss of snowpack bromine using a global chemical transport model. Trend analysis of the ice‐core records shows that only the high‐latitude coastal Akademii Nauk (AN) ice core from the Russian Arctic preserves significant trends since pre‐industrial times that are consistent with trends in sea ice extent and anthropogenic emissions from source regions. Model simulations suggest that recycling of reactive bromine on the snow skin layer (top 1 mm) results in 9–17% loss of deposited bromine across all six ice‐core locations. Reactive bromine production from below the snow skin layer and within the snow photic zone is potentially more important, but the magnitude of this source is uncertain. Model simulations suggest that the AN core is most likely to preserve an atmospheric signal compared to five Greenland ice cores due to its high latitude location combined with a relatively high snow accumulation rate. Understanding the sources and amount of photochemically reactive snow bromide in the snow photic zone throughout the sunlit period in the high Arctic is essential for interpreting ice‐core bromine, and warrants further lab studies and field observations at inland locations. 
    more » « less
  10. Abstract Variability in sea ice is a critical climate feedback, yet the seasonal behavior of Southern Hemisphere sea ice and climate across multiple timescales remains unclear. Here, we develop a seasonally resolved Holocene sea salt record using major ion measurements of the South Pole Ice Core (SPC14). We combine the SPC14 data with the GEOS‐Chem chemical transport model to demonstrate that the primary sea salt source switches seasonally from open water (summer) to sea ice (winter), with wintertime variations disproportionately responsible for the centennial to millennial scale structure in the record. We interpret increasing SPC14 and circum‐Antarctic Holocene sea salt concentrations, particularly between 8 and 10 ka, as reflecting a period of winter sea ice expansion. Between 5 and 6 ka, an anomalous drop in South Atlantic sector sea salt indicates a temporary sea ice reduction that may be coupled with Northern Hemisphere cooling and associated ocean circulation changes. 
    more » « less